Very I - favorable space

A.Kucharski* and Sz.Plewik and V.Valov

University of Silesia, Katowice*

Winter School, Hejnice 2011

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

Two players playing on a topological space X.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$

• Player I wins if the union of all open sets which have been chosen by Player II is dense in *X*

P. Daniels, K. Kunen and H. Zhou

On the open-open game, Fund. Math. 145 (1994), no. 3, 205 - 220.

- Player I choosing a non-empty open set $U \subseteq X$.
- Player II should choosing a non-empty open set $V \subseteq U$
- Player I wins if the union of all open sets which have been chosen by Player II is dense in X

A space X is called I-*favorable* if player I has a winning strategy. This means that there exists a function $\sigma : \bigcup \{ \mathcal{T}^n : n \ge 0 \} \to \mathcal{T}$ such that for each game

 $\sigma(\emptyset), B_0, \sigma(B_0), B_1, \sigma(B_0, B_1), B_2, \ldots, B_n, \sigma(B_0, \ldots, B_n), B_{n+1}, \ldots$

the union $\bigcup_{n\geq 0} B_n$ is dense in X,

A space X is called I-*favorable* if player I has a winning strategy. This means that there exists a function $\sigma : \bigcup \{\mathcal{T}^n : n \ge 0\} \to \mathcal{T}$ such that for each game

 $\sigma(\emptyset), B_0, \sigma(B_0), B_1, \sigma(B_0, B_1), B_2, \ldots, B_n, \sigma(B_0, \ldots, B_n), B_{n+1}, \ldots$

the union $\bigcup_{n\geq 0} B_n$ is dense in X,

A space X is called I-*favorable* if player I has a winning strategy. This means that there exists a function $\sigma : \bigcup \{\mathcal{T}^n : n \ge 0\} \to \mathcal{T}$ such that for each game

 $\sigma(\emptyset), B_0, \sigma(B_0), B_1, \sigma(B_0, B_1), B_2, \ldots, B_n, \sigma(B_0, \ldots, B_n), B_{n+1}, \ldots$

the union $\bigcup_{n\geq 0} B_n$ is dense in X,

A space X is called I-*favorable* if player I has a winning strategy. This means that there exists a function $\sigma : \bigcup \{\mathcal{T}^n : n \ge 0\} \to \mathcal{T}$ such that for each game

$$\sigma(\emptyset), B_0, \sigma(B_0), B_1, \sigma(B_0, B_1), B_2, \ldots, B_n, \sigma(B_0, \ldots, B_n), B_{n+1}, \ldots$$

the union $\bigcup_{n\geq 0} B_n$ is dense in X,

A family $\mathcal{C} \subset [\mathcal{T}]^{\leqslant \omega}$ is said to be a *club* if:

(i) C is closed under increasing ω-chains, i.e., if C₁ ⊂ C₂ ⊂ ... is an increasing ω-chain from C, then U_{n≥1} C_n ∈ C;
(ii) for any B ∈ [T]^{≤ω} there exists C ∈ C with B ⊂ C.

▶ < Ξ ▶ <</p>

A family $\mathcal{C} \subset [\mathcal{T}]^{\leqslant \omega}$ is said to be a *club* if:

 (i) C is closed under increasing ω-chains, i.e., if C₁ ⊂ C₂ ⊂ ... is an increasing ω-chain from C, then U_{n≥1} C_n ∈ C;

(ii) for any $B\in [\mathcal{T}]^{\leqslant\omega}$ there exists $C\in\mathcal{C}$ with $B\subset C$.

A family $\mathcal{C} \subset [\mathcal{T}]^{\leqslant \omega}$ is said to be a *club* if:

- (i) C is closed under increasing ω-chains, i.e., if C₁ ⊂ C₂ ⊂ ... is an increasing ω-chain from C, then U_{n≥1} C_n ∈ C;
- (ii) for any $B \in [\mathcal{T}]^{\leqslant \omega}$ there exists $C \in \mathcal{C}$ with $B \subset C$.

Definition

Let \mathcal{T} be topology on X we write $C \subset_c \mathcal{T}$ if for any nonempty $V \in \mathcal{T}$ there exists $W \in C$ such that if $U \in C$ and $U \subset W$, then $U \cap V \neq \emptyset$.

Theorem (Daniels-Kunen-Zhou 1994)

Topological space X is I-favorable if and only if the family

 $\{\mathcal{P}\in[\mathcal{T}]^{\leqslant\omega}:\mathcal{P}\subset_{c}\mathcal{T}\}$

I ← Ξ →

contains a club.

Definition

Let \mathcal{T} be topology on X we write $C \subset_c \mathcal{T}$ if for any nonempty $V \in \mathcal{T}$ there exists $W \in C$ such that if $U \in C$ and $U \subset W$, then $U \cap V \neq \emptyset$.

Theorem (Daniels-Kunen-Zhou 1994)

Topological space X is I-favorable if and only if the family

 $\{\mathcal{P}\in[\mathcal{T}]^{\leqslant\omega}:\mathcal{P}\subset_{c}\mathcal{T}\}$

contains a club.

A space X is called *very* I-favorable if the family

 $\{\mathcal{P}\in [\mathcal{T}]^{\leqslant\omega}:\mathcal{P}\subset_{v}\mathcal{T}\}$

contains a club.

where \mathcal{T} is a topology on X and $\mathcal{P} \subset_v \mathcal{T}$ means that

for any $S \subset \mathcal{P}$ and $x \notin cl_X \bigcup S$, there exists $W \in \mathcal{P}$ such that $x \in W$ and $W \cap \bigcup S = \emptyset$.

It is easily seen that $\mathcal{P} \subset_{v} \mathcal{T}$ implies $\mathcal{P} \subset_{c} \mathcal{T}$.

A space X is called very I-favorable if the family

 $\{\mathcal{P}\in[\mathcal{T}]^{\leqslant\omega}:\mathcal{P}\subset_{v}\mathcal{T}\}$

contains a club.

where \mathcal{T} is a topology on X and $\mathcal{P} \subset_{v} \mathcal{T}$ means that

for any $S \subset P$ and $x \notin cl_X \bigcup S$, there exists $W \in P$ such that $x \in W$ and $W \cap \bigcup S = \emptyset$.

It is easily seen that $\mathcal{P} \subset_{v} \mathcal{T}$ implies $\mathcal{P} \subset_{c} \mathcal{T}$.

 $\beta\omega$ is an example of I-favorable space and not very I-favorable space.

/□ ▶ < 글 ▶ <

A space X is called very I-favorable if the family

 $\{\mathcal{P}\in[\mathcal{T}]^{\leqslant\omega}:\mathcal{P}\subset_{v}\mathcal{T}\}$

contains a club.

where \mathcal{T} is a topology on X and $\mathcal{P} \subset_{v} \mathcal{T}$ means that

for any $S \subset P$ and $x \notin cl_X \bigcup S$, there exists $W \in P$ such that $x \in W$ and $W \cap \bigcup S = \emptyset$.

It is easily seen that $\mathcal{P} \subset_{v} \mathcal{T}$ implies $\mathcal{P} \subset_{c} \mathcal{T}$.

A space X is called very I-favorable if the family

 $\{\mathcal{P}\in[\mathcal{T}]^{\leqslant\omega}:\mathcal{P}\subset_{v}\mathcal{T}\}$

contains a club.

where \mathcal{T} is a topology on X and $\mathcal{P} \subset_{v} \mathcal{T}$ means that

for any $S \subset P$ and $x \notin cl_X \bigcup S$, there exists $W \in P$ such that $x \in W$ and $W \cap \bigcup S = \emptyset$.

It is easily seen that $\mathcal{P} \subset_{v} \mathcal{T}$ implies $\mathcal{P} \subset_{c} \mathcal{T}$.

A space X is called very I-favorable if the family

 $\{\mathcal{P}\in[\mathcal{T}]^{\leqslant\omega}:\mathcal{P}\subset_{v}\mathcal{T}\}$

contains a club.

where \mathcal{T} is a topology on X and $\mathcal{P} \subset_{v} \mathcal{T}$ means that

for any $S \subset P$ and $x \notin cl_X \bigcup S$, there exists $W \in P$ such that $x \in W$ and $W \cap \bigcup S = \emptyset$.

It is easily seen that $\mathcal{P} \subset_{v} \mathcal{T}$ implies $\mathcal{P} \subset_{c} \mathcal{T}$.

Suppose that there exists a function $\sigma: \bigcup \{Q^n : n \ge 0\} \to Q$ such that

if B_0, B_1, \ldots is a sequence of non-empty elements of Q with $B_0 \subset \sigma(\emptyset)$ and $B_{n+1} \subset \sigma((B_0, B_1, \ldots, B_n))$ for all $n \in \omega$, then $\{B_n : n \in \omega\} \cup \{\sigma((B_0, B_1, \ldots, B_n)) : n \in \omega\} \subset_v Q$.

The function σ is called a *strong winning strategy with respect to* Q. If Q = T, σ is called a strong winning strategy.

Suppose that there exists a function $\sigma:\bigcup\{\mathcal{Q}^n:n\geqslant 0\}\to \mathcal{Q}$ such that

if B_0, B_1, \ldots is a sequence of non-empty elements of Q with $B_0 \subset \sigma(\emptyset)$ and $B_{n+1} \subset \sigma((B_0, B_1, \ldots, B_n))$ for all $n \in \omega$, then $\{B_n : n \in \omega\} \cup \{\sigma((B_0, B_1, \ldots, B_n)) : n \in \omega\} \subset_v Q$.

The function σ is called a *strong winning strategy with respect to* Q. If Q = T, σ is called a strong winning strategy.

Suppose that there exists a function $\sigma: \bigcup \{Q^n : n \ge 0\} \to Q$ such that

if B_0, B_1, \ldots is a sequence of non-empty elements of \mathcal{Q} with $B_0 \subset \sigma(\emptyset)$ and $B_{n+1} \subset \sigma((B_0, B_1, \ldots, B_n))$ for all $n \in \omega$, then $\{B_n : n \in \omega\} \cup \{\sigma((B_0, B_1, \ldots, B_n)) : n \in \omega\} \subset_v \mathcal{Q}.$

The function σ is called a *strong winning strategy with respect to* Q. If Q = T, σ is called a strong winning strategy.

Suppose that there exists a function $\sigma: \bigcup \{Q^n : n \ge 0\} \to Q$ such that

if B_0, B_1, \ldots is a sequence of non-empty elements of \mathcal{Q} with $B_0 \subset \sigma(\emptyset)$ and $B_{n+1} \subset \sigma((B_0, B_1, \ldots, B_n))$ for all $n \in \omega$, then $\{B_n : n \in \omega\} \cup \{\sigma((B_0, B_1, \ldots, B_n)) : n \in \omega\} \subset_{v} \mathcal{Q}.$

The function σ is called a *strong winning strategy with respect to* Q. If Q = T, σ is called a strong winning strategy.

Suppose that there exists a function $\sigma: \bigcup \{ \mathcal{Q}^n : n \ge 0 \} \to \mathcal{Q}$ such that

if B_0, B_1, \ldots is a sequence of non-empty elements of \mathcal{Q} with $B_0 \subset \sigma(\emptyset)$ and $B_{n+1} \subset \sigma((B_0, B_1, \ldots, B_n))$ for all $n \in \omega$, then $\{B_n : n \in \omega\} \cup \{\sigma((B_0, B_1, \ldots, B_n)) : n \in \omega\} \subset_v \mathcal{Q}.$

The function σ is called a *strong winning strategy with respect to* Q. If Q = T, σ is called a strong winning strategy.

Let X be a topological space and $\mathcal{Q} \subset \mathcal{T}$ be a family closed under finite intersection. Then there is a strong winning strategy $\sigma : \bigcup \{\mathcal{Q}^n : n \ge 0\} \to \mathcal{Q}$ with respect to \mathcal{Q} if and only if the family $\{\mathcal{P} \in [\mathcal{Q}]^{\leqslant \omega} : \mathcal{P} \subset_v \mathcal{Q}\}$ contains a club \mathcal{C} such that every $A \in \mathcal{C}$ is closed under finite intersections.

If there exists a base \mathcal{B} of X such that the family $\{\mathcal{P} \in [\mathcal{B}]^{\leq \omega} : \mathcal{P} \subset_{v} \mathcal{B}\}$ contains a club, then the family $\{\mathcal{P} \in [\mathcal{T}]^{\leq \omega} : \mathcal{P} \subset_{v} \mathcal{T}\}$ contains a club too, where \mathcal{T} is topology on X.

If X is a completely regular space, then Σ_X denotes the collection of all co-zero sets in X.

Corollary

Let X be a completely regular space and $\mathcal{B} \subset \Sigma_X$ a base for X. If $\{\mathcal{P} \in [\mathcal{B}]^{\leqslant \omega} : \mathcal{P} \subset_v \mathcal{B}\}$ contains a club, then the family $\{\mathcal{P} \in [\Sigma_X]^{\leqslant \omega} : \mathcal{P} \subset_v \Sigma_X\}$ contains a club too.

If there exists a base \mathcal{B} of X such that the family $\{\mathcal{P} \in [\mathcal{B}]^{\leq \omega} : \mathcal{P} \subset_{v} \mathcal{B}\}$ contains a club, then the family $\{\mathcal{P} \in [\mathcal{T}]^{\leq \omega} : \mathcal{P} \subset_{v} \mathcal{T}\}$ contains a club too, where \mathcal{T} is topology on X.

If X is a completely regular space, then Σ_X denotes the collection of all co-zero sets in X.

Corollary

Let X be a completely regular space and $\mathcal{B} \subset \Sigma_X$ a base for X. If $\{\mathcal{P} \in [\mathcal{B}]^{\leqslant \omega} : \mathcal{P} \subset_v \mathcal{B}\}$ contains a club, then the family $\{\mathcal{P} \in [\Sigma_X]^{\leqslant \omega} : \mathcal{P} \subset_v \Sigma_X\}$ contains a club too.

If there exists a base \mathcal{B} of X such that the family $\{\mathcal{P} \in [\mathcal{B}]^{\leq \omega} : \mathcal{P} \subset_{v} \mathcal{B}\}$ contains a club, then the family $\{\mathcal{P} \in [\mathcal{T}]^{\leq \omega} : \mathcal{P} \subset_{v} \mathcal{T}\}$ contains a club too, where \mathcal{T} is topology on X.

If X is a completely regular space, then Σ_X denotes the collection of all co-zero sets in X.

Corollary

Let X be a completely regular space and $\mathcal{B} \subset \Sigma_X$ a base for X. If $\{\mathcal{P} \in [\mathcal{B}]^{\leqslant \omega} : \mathcal{P} \subset_{v} \mathcal{B}\}$ contains a club, then the family $\{\mathcal{P} \in [\Sigma_X]^{\leqslant \omega} : \mathcal{P} \subset_{v} \Sigma_X\}$ contains a club too.

An inverse system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is said to be a σ -complete, whenever Σ is σ -complete and for every chain $\{\gamma_n : n \in \omega\} \subseteq \Sigma$, such that $\gamma = \sup\{\gamma_n : n \in \omega\} \in \Sigma$, there holds

$$X_{\gamma} = \varprojlim \{ X_{\gamma_n}, \pi_{\gamma_n}^{\gamma_{n+1}} \}.$$

A continuous surjection is called *skeletal* whenever for any non-empty open sets $U \subseteq X$ the closure of f[U] has non-empty interior.

An inverse system $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is said to be a σ -complete, whenever Σ is σ -complete and for every chain $\{\gamma_n : n \in \omega\} \subseteq \Sigma$, such that $\gamma = \sup\{\gamma_n : n \in \omega\} \in \Sigma$, there holds

$$X_{\gamma} = \varprojlim \{ X_{\gamma_n}, \pi_{\gamma_n}^{\gamma_{n+1}} \}.$$

A continuous surjection is called *skeletal* whenever for any non-empty open sets $U \subseteq X$ the closure of f[U] has non-empty interior.

Theorem (Sz. Plewik and me 2008)

Let X be compact space X is a I-favorable , iff

$$X = \varprojlim \{ X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma \},$$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are skeletal.

Proposition(Sz. Plewik and me 2008)

If X is a I-favorable completely regular space then X can be dense embeding into $Y = \varprojlim \{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, where $\{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, consisting of separable metric spaces, and all bonding maps π_{ϱ}^{σ} are skeletal.

Theorem (Sz. Plewik and me 2008)

Let X be compact space X is a I-favorable , iff

$$X = \varprojlim \{ X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma \},$$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are skeletal.

Proposition(Sz. Plewik and me 2008)

If X is a I-favorable completely regular space then X can be dense embeding into $Y = \varprojlim \{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, where $\{Y_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, consisting of separable metric spaces, and all bonding maps π_{ρ}^{σ} are skeletal. We say that a space X is an almost limit of the inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$, if X can be embedded in $\varprojlim S$ such that $\pi_{\sigma}(X) = X_{\sigma}$ for each $\sigma \in \Gamma$.

We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$. A completely regular space X is *skeletally generated* if X is the almost limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of separable metric spaces X_{σ} and skeletal surjective bonding maps π_{ϱ}^{σ} .

Theorem (V.Valov 2010)

A completely regular space X is skeletally generated if and only if X is I-favorable We say that a space X is an almost limit of the inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$, if X can be embedded in $\varprojlim S$ such that $\pi_{\sigma}(X) = X_{\sigma}$ for each $\sigma \in \Gamma$.

We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$. A completely regular space X is *skeletally generated* if X is the almost limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of separable metric spaces X_{σ} and skeletal surjective bonding maps π_{ϱ}^{σ} .

Theorem (V.Valov 2010)

A completely regular space X is skeletally generated if and only if X is I-favorable

We say that a space X is an almost limit of the inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$, if X can be embedded in $\varprojlim S$ such that $\pi_{\sigma}(X) = X_{\sigma}$ for each $\sigma \in \Gamma$.

We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$. A completely regular space X is *skeletally generated* if X is the almost limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of separable metric spaces X_{σ} and skeletal surjective bonding maps π_{ϱ}^{σ} .

Theorem (V.Valov 2010)

A completely regular space X is skeletally generated if and only if X is I-favorable

A (1) > A (2) > A

We say that a space X is an almost limit of the inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$, if X can be embedded in $\varprojlim S$ such that $\pi_{\sigma}(X) = X_{\sigma}$ for each $\sigma \in \Gamma$.

We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$. A completely regular space X is *skeletally generated* if X is the almost limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of separable metric spaces X_{σ} and skeletal surjective bonding maps π_{ϱ}^{σ} .

Theorem (V.Valov 2010)

A completely regular space X is skeletally generated if and only if X is I-favorable

A map is *nearly open* if the image of every open subset is nearly open. Continuous nearly open maps were called d-*open* by M. Tkachenko (1981). Obviously, every d-open map is skeletal.

Prposition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ a continuous function. Then the following conditions are equivalent:

I is d-open; i.e. f(U) ⊂ Int_Y cl_Y f(U) for every open subset U ⊂ X;

○ cl_X f⁻¹(V) = f⁻¹(cl_Y V) for any open V ⊂ Y;
 ○ {f⁻¹(V) : V ∈ T_Y} ⊂_V T_X.

A map is *nearly open* if the image of every open subset is nearly open. Continuous nearly open maps were called d-*open* by M. Tkachenko (1981). Obviously, every d-open map is skeletal.

Prposition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ a continuous function. Then the following conditions are equivalent:

If is d-open; i.e. f(U) ⊂ Int_Y cl_Y f(U) for every open subset U ⊂ X;

A (1) > A (2) > A (2)

○ cl_X f⁻¹(V) = f⁻¹(cl_Y V) for any open V ⊂ Y;
○ {f⁻¹(V) : V ∈ T_Y} ⊂_V T_X.

A map is *nearly open* if the image of every open subset is nearly open. Continuous nearly open maps were called d-*open* by M. Tkachenko (1981). Obviously, every d-open map is skeletal.

Prposition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ a continuous function. Then the following conditions are equivalent:

 f is d-open;i.e. f(U) ⊂ Int_Y cl_Y f(U) for every open subset U ⊂ X;

伺 ト イ ヨ ト イ ヨ

3 cl_X f⁻¹(V) = f⁻¹(cl_Y V) for any open V ⊂ Y;
3 {f⁻¹(V) : V ∈ T_Y} ⊂_V T_X.

A map is *nearly open* if the image of every open subset is nearly open. Continuous nearly open maps were called d-*open* by M. Tkachenko (1981). Obviously, every d-open map is skeletal.

Prposition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ a continuous function. Then the following conditions are equivalent:

 f is d-open; i.e. f(U) ⊂ Int_Y cl_Y f(U) for every open subset U ⊂ X;

2
$$\operatorname{cl}_X f^{-1}(V) = f^{-1}(\operatorname{cl}_Y V)$$
 for any open $V \subset Y$;

A map is *nearly open* if the image of every open subset is nearly open. Continuous nearly open maps were called d-*open* by M. Tkachenko (1981). Obviously, every d-open map is skeletal.

Prposition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and $f : X \to Y$ a continuous function. Then the following conditions are equivalent:

 f is d-open;i.e. f(U) ⊂ Int_Y cl_Y f(U) for every open subset U ⊂ X;

2
$$\operatorname{cl}_X f^{-1}(V) = f^{-1}(\operatorname{cl}_Y V)$$
 for any open $V \subset Y$;

3
$$\{f^{-1}(V): V \in \mathcal{T}_Y\} \subset_v \mathcal{T}_X$$

A completely regular space X is d-openly generated if X is the almost limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of separable metric spaces X_{σ} and d-open surjective bonding maps π_{ϱ}^{σ} .

Theorem

A Hausdorff space X is very I-favorable if and only if $X = a - \varprojlim S$, where $S = \{X_A, q_B^A, C\}$ is a σ -complete inverse system such that all X_A are (not-necessarily Hausdorff) spaces with countable weight and the bonding maps q_B^A are d-open and onto.

A completely regular space X is d-openly generated if X is the almost limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of separable metric spaces X_{σ} and d-open surjective bonding maps π_{ϱ}^{σ} .

Theorem

A Hausdorff space X is very I-favorable if and only if $X = a - \varprojlim S$, where $S = \{X_A, q_B^A, C\}$ is a σ -complete inverse system such that all X_A are (not-necessarily Hausdorff) spaces with countable weight and the bonding maps q_B^A are d-open and onto.

Theorem

A completely regular space X is very I-favorable with respect to the co-zero sets if and only if X is d-openly generated.

Recall that a normal space is called perfectly normal if every open set is a co-zero set.

Corollary

Every perfectly normal very I-favorable space is d-openly generated.

Theorem

A completely regular space X is very I-favorable with respect to the co-zero sets if and only if X is d-openly generated.

Recall that a normal space is called perfectly normal if every open set is a co-zero set.

Corollary

Every perfectly normal very I-favorable space is d-openly generated.

Theorem

A completely regular space X is very I-favorable with respect to the co-zero sets if and only if X is d-openly generated.

Recall that a normal space is called perfectly normal if every open set is a co-zero set.

Corollary

Every perfectly normal very I-favorable space is d-openly generated.

•
$$e(\emptyset) = \emptyset;$$

•
$$e(U) \cap X = U;$$

•
$$e(U) \cap e(V) = \emptyset$$
 provided $U \cap V = \emptyset$.

Theorem

• $e(\emptyset) = \emptyset;$

•
$$e(U) \cap X = U;$$

•
$$e(U) \cap e(V) = \emptyset$$
 provided $U \cap V = \emptyset$.

Theorem

- $e(\emptyset) = \emptyset;$
- $e(U) \cap X = U;$
- $e(U) \cap e(V) = \emptyset$ provided $U \cap V = \emptyset$.

Theorem

- $e(\emptyset) = \emptyset;$
- $e(U) \cap X = U;$
- $e(U) \cap e(V) = \emptyset$ provided $U \cap V = \emptyset$.

Theorem

- $e(\emptyset) = \emptyset;$
- $e(U) \cap X = U;$
- $e(U) \cap e(V) = \emptyset$ provided $U \cap V = \emptyset$.

Theorem

A compact Hausdorff space X is openly generated if X is the limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of compact metric spaces X_{σ} and open surjective bonding maps π_{ϱ}^{σ} .

Theorem

A compact Hausdorff space is very I-favorable with respect to the co-zero sets if and only if X is openly generated.

A compact Hausdorff space X is openly generated if X is the limit of a σ -complete inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Gamma\}$ consisting of compact metric spaces X_{σ} and open surjective bonding maps π_{ϱ}^{σ} .

Theorem

A compact Hausdorff space is very I-favorable with respect to the co-zero sets if and only if X is openly generated.

We say that a topological space X is *perfectly* κ -normal if for every open and disjoint subset U, V there are open F_{σ} subset W_U, W_V with $W_U \cap W_V = \emptyset$ and $U \subset W_U$ and $V \subset W_V$.

Proposition

If a normal perfectly κ -normal space is a continuous image of a very I-favorable space under a perfect map, then X is d-openly generated.

Proposition

If the image of a compact Hausdorff very I-favorable space under a continuous map is perfectly κ -normal, then X is openly generated.

We say that a topological space X is *perfectly* κ -normal if for every open and disjoint subset U, V there are open F_{σ} subset W_U, W_V with $W_U \cap W_V = \emptyset$ and $U \subset W_U$ and $V \subset W_V$.

Proposition

If a normal perfectly κ -normal space is a continuous image of a very I-favorable space under a perfect map, then X is d-openly generated.

Proposition

If the image of a compact Hausdorff very I-favorable space under a continuous map is perfectly κ -normal, then X is openly generated.

We say that a topological space X is *perfectly* κ -normal if for every open and disjoint subset U, V there are open F_{σ} subset W_U, W_V with $W_U \cap W_V = \emptyset$ and $U \subset W_U$ and $V \subset W_V$.

Proposition

If a normal perfectly κ -normal space is a continuous image of a very I-favorable space under a perfect map, then X is d-openly generated.

Proposition

If the image of a compact Hausdorff very I-favorable space under a continuous map is perfectly κ -normal, then X is openly generated.